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Highlights: 

• We ask whether the core language network is recruited for statistical learning (SL) 
• Subject-specific language regions (bilateral MTG and STG) were engaged during SL.  
• Individuals vary in the most activated regions engaged during SL 
• Little spatial convergence in co-activated brain regions for SL and language. 
• SL and language comprehension were not similarly activated at the voxel level.  

Keywords: 
fMRI; Statistical Learning; Language Processing; Individual Differences 
 
  



Abstract.  
Statistical learning (SL) refers to the ability to detect and learn regularities from input and is 
foundational to language acquisition. Recent behavioral research has demonstrated a reciprocal 
relationship between prior language experiences and performance on linguistic measures of SL. 
Despite the dominant role of SL as a theoretical construct for language development, there has 
been a lack of direct evidence supporting shared neural substrates underlying language and SL. 
The current study tests whether the brain regions involved in language processing are similarly 
recruited during a speech segmentation SL task by probing the brain activation patterns of 
auditory SL within each learner’s language network. Twenty-two adults performed an auditory 
SL task and a language localizer task as their brain activities were monitored with functional 
magnetic resonance imaging. Within the subject-specific language network, the bilateral superior 
temporal gyri (STG) and middle temporal gyri (MTG) showed greater hemodynamic responses 
while participants were processing structured versus random syllable sequences. However, due 
to substantial spatial heterogeneity of brain regions engaged during SL, there was no 
convergence across participants in the conjunction of SL and language tasks. We further ask 
whether neural representation of the SL and language tasks is similar within language regions 
and outside of the core language network by using a multi-voxel pattern similarity analysis 
approach. We found no evidence of task similarity either within the language regions or outside 
of the classic language network. Our findings suggest that while parts of the language network 
are recruited during auditory SL, the specific subregions vary substantially across individuals.  
Despite the close relationship between language processing and SL, they do not share a similar 
neurocomputational basis within the mature language network.  
   
 
 
  



1. Introduction 

Statistical learning (SL), a robust ability to rapidly detect regularities and variabilities from 

inputs, is a central theoretical account for first language acquisition (Aslin & Newport, 2012; 

Saffran et al., 1996). However, whether linguistic SL shares a neurocomputational basis with 

mature language processing remains an open question. On one hand, successful SL has been 

demonstrated across age groups (e.g., infants and adults), species (e.g. monkeys: Meyer & Olson, 

2011); rats: Toro & Trobalón, 2005), modalities (e.g., non-linguistic auditory: Gebhart, Newport, 

review, & 2009, 2009; Saffran, Johnson, Aslin, & Newport, 1999); visual: Fiser & Aslin, 2002), 

and linguistic hierarchies (e.g., phoneme discrimination: Maye, Werker, & Gerken, 2002; syntax 

discrimination: Gomez & Gerken, 1999; Thompson & Newport, 2007), advocating for a domain-

general SL mechanism. On the other hand, learning outcomes systematically vary across sensory 

modalities (e.g., Conway & Christiansen, 2005; Emberson, Conway, & Christiansen, 2011) 

suggesting SL performance is constrained by domain-specific mechanisms. Recent behavioral 

studies emphasize individual differences in SL and hint at a domain-specific relationship between 

linguistic SL and language processing (Arnon, 2019; Erickson et al., 2016; Schneider et al., 2020; 

Siegelman et al., 2018; Siegelman & Frost, 2015). Indeed, the modern neurobiological framework 

of SL proposes a dual-stream model that includes both domain-specific and domain-general 

learning components (Conway, 2020; Frost, Armstrong, Siegelman, & Christiansen, 2015). 

Limited studies investigating the neural mechanisms of SL have reported brain activation in both 

domain-general and language-related areas during learning of speech sound sequences (Cunillera 

et al., 2009; Finn et al., 2018; Finn & Hudson Kam, 2015; McNealy et al., 2006; Plante et al., 

2017). However, domain-general and language-specific brain regions can often be found in close 

proximity to one another despite having contrasting functional profiles (Fedorenko et al., 2012), 



confounding claims that SL is supported by one type of region or another. Elucidating the 

relationship between language and SL in the brain can provide key insights into the nature of 

domain-specific constraints on the process of SL. The current study aims to clarify whether 

auditory linguistic SL and auditory language processing share similar neurocomputational 

processes in adults by comparing the neural processes that support both language processing and 

SL within individual participants. 

The potential functional overlap between SL and language processing has received indirect 

support from a limited set of functional neuroimaging studies. For example, in studies of SL 

involving speech stimuli, the inferior frontal gyrus (IFG), superior temporal gyrus (STG), and 

supramarginal gyrus (SMG) in the left hemisphere demonstrate sensitivity to statistical regularities 

(Cunillera et al., 2009; McNealy et al., 2006; Karuza et al., 2013; Plante et al., 2017; Orpella et al., 

2021, 2022). For example, these regions show greater activation in processing structured versus 

random speech sequences (Cunillera et al., 2009; McNealy et al., 2006; Orpella et al., 2021, 2022), 

and increasing activation as a function of exposure (Plante et al., 2017; McNealy et al., 2006; 

Karuza et al, 2013). Due to the anatomical similarity between these regions and regions within the 

core-language network, which is a network of regions engaged specifically during comprehension 

of semantic and syntax information (Bautista & Wilson, 2016; Blank et al., 2016; Julian et al., 

2012; Keller et al., 2001) but not during processing of nonlinguistic information (Fedorenko et al., 

2011; Fedorenko & Varley, 2016), the activation of these regions during SL is often associated 

with language, although they have never directly been compared (e.g.,  Park et al., 2022; Finn et 

al., 2018). Existing evidence for the association between SL and language hinges on the 

assumption that the neural substrates found in SL have functions related to language. Despite 

providing early insights into the link between SL and language processing, this practice, known as 



reverse inferencing, is limited by the weak functional selectivity of these brain regions/markers, 

as well as the remarkable inter-subject variabilities in the locations of the activation (Fedorenko et 

al., 2010; Poldrack, 2011). The lack of direct comparison between SL and language processing is 

problematic as the cortical regions found in these studies can be functionally heterogeneous 

themselves. The only known study to investigate common neural activation during spoken 

language processing and SL within the same individual utilized an artificial grammar learning 

(AGL) task and found similar P600 responses were elicited for structural incongruencies during 

spoken language and AGL. The authors interpreted this to indicate that the same neural 

mechanisms were recruited during syntactic processing of both language stimuli and SL of 

sequential patterns; however, it remains possible that both tasks are subserved by domain-general 

neural generators (Christiansen et al., 2012).  

A more thorough investigation of the functional overlap between SL and language 

processing relies on the quantitative association between two cognitive processes. Despite 

substantial research documenting the behavioral relationships between SL and language 

processing skills (Arciuli & Simpson, 2012; Arciuli & Torkildsen, 2012; Conway, Bauernschmidt, 

Huang, & Pisoni, 2010; Conway & Pisoni, 2008; Kirkham, Slemmer, & Johnson, 2002; Misyak, 

Christiansen, & Tomblin, 2010; Qi, Sanchez Araujo, Georgan, Gabrieli, & Arciuli, 2018), only a 

few studies have demonstrated neurobiological evidence linking the two. For example, greater 

activation in the left middle frontal gyrus (MFG) during an auditory linguistic SL task was 

positively associated with rapid auditory processing speed (McNealy et al., 2006). Greater 

activation at left frontal insular cortex and left STG was associated with greater SL of non-adjacent 

dependencies (Orpella et al., 2021). In children with autism, less activation in the left inferior 

parietal lobule (IPL) and putamen was associated with more severe communicative deficits (Scott-



Van Zeeland et al., 2010). While brain-behavior correlational approaches facilitate the 

interpretation of complex patterns of neural activation (Reber, 2013), it is unclear whether the 

functional organization of SL in the brain is similar to that of language processing. 

In addition to language-specific regions, many studies have highlighted the domain-

generality of neural activation during SL tasks. For example, domain-general learning and memory 

systems, including the basal ganglia (e.g., Finn et al., 2019; Orpella et al., 2022) and hippocampus 

(e.g., Schapiro et al., 2014; 2017), are considered important for SL, though the necessity of their 

engagement is still greatly debated (Covington et al., 2018; Schapiro et al., 2014; 2017). 

Intriguingly, activation at the left, right, or bilateral inferior frontal gyrus (IFG) during processing 

of both linguistic and non-linguistic stimuli has been reported in most neuroimaging studies using 

SL paradigms (Milne et al., 2018; Karuza et al., 2013, Schapiro et al., 2013; Turk-Browne, Scholl, 

Chun, & Johnson, 2009). Activation in the LIFG has been positively correlated with familiarity 

ratings of shape sequences (Turk-Browne et al., 2009) and with segmentation of structured tone 

sequences (Abla & Okanoya, 2008). From these studies, researchers have concluded that because 

SL across modalities engages the LIFG, it is tapping into a domain-general mechanism. Therefore, 

contrary to the interpretation above, where activation of the LIFG is involved in processing 

linguistic stimuli, activation of the LIFG has been viewed as a generic online sequence processor, 

which drives the computation of statistical regularities (Petersson et al., 2012; Karuza et al., 2013). 

These strikingly contradictory interpretations for the same anatomical region (e.g., LIFG) 

emphasizes how additional research is needed to establish whether or not extraction of abstract 

statistical patterns engages linguistic processing. 

While SL tasks have been shown to activate regions often engaged during language 

processing, others suggest these same regions underlie a domain-general SL mechanism. Three 



reasons may account for the paradox. First, as mentioned, many studies associating SL with 

language processing rely on correlation and reverse inferencing, oversimplifying activation within 

these regions which are known to be highly heterogenous. Second, SL is highly heterogeneous 

across individuals. Group-level activation patterns may mask voxels that are activated at the 

individual level, and critical for SL. Third, activation during SL within the core-language network 

does not necessarily mean this region is processing regularities in an artificial language the same 

way as natural language processing. Taken together, there is a critical need to directly investigate 

similarities in cortical architecture among individual subjects during language processing and SL. 

The current study therefore seeks to identify the functional neural profiles of auditory SL 

among individuals, and whether these patterns of activity are similar to those engaged during 

language processing. To answer these questions, we implement a Group-Constrained Subject-

Specific (GCSS) analysis, which is designed to identify functional regions of interest engaged in 

high-level language processing (Scott et al., 2019; Julian et al., 2012; Fedorenko, et al., 2010) and 

address intersubject variability. We examine how individually defined language regions are 

activated in response to structured versus random speech sequences in an auditory linguistic SL 

task. We also seek to elucidate similarities in activation patterns within an individual during 

learning of structured versus random speech in an auditory linguistic SL task and during processing 

of intact versus degraded speech in an auditory language comprehension task using both univariate 

conjunction analyses and multivariate similarity analyses. We hypothesize that if linguistic SL is 

constrained by an existing language system, then we should expect to see at least a part of the 

mature language network actively engaged during linguistic SL. In addition, a shared functional 

organization of the language-related brain regions underlying SL and language processing will 

support a stronger version of this hypothesis. 



2. Methods 

2.1. Participants 

Twenty-seven adults (Mage = 20.8 years, SDage = 3.53 years, 20 Females) from the mid-

Atlantic region of the United States were recruited via public flyers and websites. All participants 

were right-handed, monolingual English speakers, with no history of neurological disorder or 

developmental delay based on self-report. Participants were screened for MRI compatibility. The 

study was approved by the University Institutional Review Board and is in compliance with the 

Declaration of Helsinki. All participants provided informed consent and were compensated at a 

rate of $20/hour in gift cards for their time. Two participants were missing data from the first 

auditory SL run, and three participants were missing data from the second auditory SL run, 

yielding insufficient data points for analysis. Therefore, the final sample size for this study is 

twenty-two (Mage = 19.87, SDage = 1.25, 15 females).  

2.2. Language Localizer fMRI Task 

2.2.1. Stimuli 

To identify brain areas sensitive to spoken language, participants underwent functional 

neuroimaging while they passively listened to engaging audio clips of natural speech taken from 

the Alice in Wonderland story. To control for low-level acoustic features of speech, these intact 

clips were contrasted with clips of degraded speech, which had been processed to be unintelligible. 

The design and validation of this task is detailed in Scott et al. (2017). Briefly, the degradation 

procedure consisted of creating low-pass (cutoff-frequency 500Hz) filtered copies of a set of clips 

of speech similar to the intact set. Then, for each clip, amplitude envelope-modulated white noise 

was added where the envelope was copied from the original clip. This white noise was then 

“softened” with low-pass filtering at pass-band frequency 8,000Hz with stop frequency of 



10,000Hz. The resulting clips are recognizable as human speech but lack lexical and phonemic 

content, and sound similar to an unintelligible radio broadcast. These stimuli, their transcriptions, 

and a presentation script are available online1.  

2.2.2. Procedure 

Across two separate runs, 16 blocks of intact speech and 16 blocks of degraded speech 

were presented. Each run lasted 5 min and 58 s. Blocks consisted of one continuous 18s audio clip. 

In addition to the 16 stimulus blocks per run, five 14-s blocks of rest were included, in which 

participants heard no stimuli. A fixation cross was presented on the screen continuously during the 

entire run. Participants were only instructed to listen attentively, and no overt responses were 

recorded. 

2.3. Auditory Statistical Learning Task 

A common practice in fMRI studies of SL is to compare brain responses during a 

familiarization phase between sequences containing regular patterns versus those containing the 

same stimuli which are ordered randomly. However, implementing a random control condition 

often interferes with learning of structured sequences. Previous research found no evidence for 

behavioral learning, despite neural differences between structured and random sequences 

(McNealy et al., 2006, 2011). We address this issue in the current study by presenting structured 

and random sequences containing different types of stimuli in the same run (speech syllables and 

non-speech tones) and counterbalancing these conditions across runs. This approach has led to 

successful learning of structured sequences, as indicated by significantly quicker response times 

in the structured than the random condition (Schneider et al., 2020). 

2.3.1. Stimuli 

 
1 https://evlab.mit.edu/aliceloc/ 



Syllable stimuli were constructed from twelve English consonant vowel (CV) syllables 

(pi/pa/pu/ti/ta/tu/di/da/du/bi/ba/bu). All syllable stimuli were made using an artificial speech 

synthesizer in a female voice. The mean duration of each syllable was 350 ms (SD = 40 ms) with 

a stimulus onset asynchrony (SOA) set at 480 ms. Tone stimuli were constructed from twelve 

musical pure tones within the same octave (a full chromatic scale starting from middle C). The 

mean duration of each tone was 460ms with a 20ms inter-stimulus interval.  

Participants were exposed to experimental blocks containing sequences with embedded 

regularities (i.e., structured blocks), sequences with no statistical regularities (i.e. random blocks), 

and silence (i.e., resting blocks; see Figure 1). Structured blocks involved the presentation of 

sequences containing four triplets, which were created by concatenating the syllables into tri-

syllabic “words” (pi-tu-bi, bu-pa-da, di-ba-pu, and ta-ti-du) and the tones into four target triplets 

(F#DE, ABC, C#A#F, and GD#G#). Random blocks contained the same 12 stimuli as presented 

in the structured blocks but were ordered pseudo-randomly, so that no combinations of any three 

stimuli were repeated more than once. A silent blank screen was presented during the resting 

blocks. Within each block, each triplet was repeated 8 times for a total of 32 triplets per block. 

Three structured blocks, 3 random blocks, and 6 resting blocks were concatenated in a 

pseudorandom order to create one run of auditory stimuli.  Among the four experimental runs, half 

contained the syllable structured blocks intermixed with the tone random blocks and the other half 

contained the syllable random blocks intermixed with the tone structured blocks. The order of the 

structured, random, and resting blocks was pseudo-randomized, and the randomization was 

independent for each run and for each participant. Adjustment was made to ensure that no more 

than two blocks of the same stimulus type were adjacent to each other. 

 



 
Figure 1.  Overview of Auditory Linguistic Statistical Learning fMRI task.  Participants were 
exposed to A) Structured blocks each containing a 96-syllable sequence with the embedded triplets 
(S-Speech), intermixed with three random blocks of tone sequences (R-Tone) and B) Random 
blocks each containing a 96-syllable randomly ordered sequence (R-Speech), intermixed with 
three structured blocks of tone sequences (S-Tone). Participants were instructed to alternate 
between tracking a specific syllable (e.g., /ku/) and tracking a specific tone in these sequences by 
pressing a button. Note: only the alien images, but not the spelling of the syllables, were present 
on the screen. 
 
2.3.2. Procedure 

Participants listened to sequences of sounds and viewed a screen with an alien cartoon 

character in the center while performing an auditory target detection task with a button response 

pad (Cambridge Research Systems). Before each block, a cue for the target was presented briefly 

with an auditory instruction “now listen for the sound /ku/” (Figure 1). The cue was a stimulus 

chosen from the last position of a triplet and was randomly assigned across each participant.  

Throughout the task, in each participant, the same cue was used for all the structured and random 

blocks of the same stimulus type. Because the order of stimuli and that of blocks were randomized 

independently for each participant, the target location among stimuli followed no systematic 

pattern either within- or cross-participants. Participants completed four experimental runs, each 

A) B)



lasted 6 minutes and 33 seconds. Because the focus of the current study is on the intersection 

between linguistic SL and language processing, only the syllable SL task was included in the 

current analysis (see Schneider et al., 2020 for more information on the tone SL task). 

2.4. Neuroimaging Data 

2.4.1. MRI acquisition 

 Data were acquired on a Siemens 3T Magnetom Prisma scanner with a 64-channel phased 

array head coil at the Center for Brain and Biomedical Imaging at the University of Delaware. 

Prior to functional imaging, whole-head, high resolution structural images, including a T1-

weighted, magnetizations-prepared rapid gradient-echo (MPRAGE) anatomical volume (TR = 

2500 ms, TE = 2.9 ms, TI  = 1070 ms, flip angle = 8.0°, voxel resolution = 1.0mm isotropic, FOV 

= 256 x 256, 176 sagittal slices) and a T2-weighted anatomical volume (TR = 3200 ms, TE = 565 

ms, flip angle = 2.0°, voxel resolution = 1.0 mm isotropic, FOV = 256 x 256, 32 sagittal slices) 

were collected. 

 Functional data were acquired using simultaneous T2*-weighted echo-planar imaging with 

multi-slice scans acquisition (Feinberg et al., 2010; Moeller et al., 2010; Setsompop et al., 2012) 

with the following acquisition parameters: TR= 800 ms, TE = 32 ms, flip angle = 61°,  FOV = 210 

x 210 mm, acceleration factor = 6. For the SL task, we required sixty adjacent slices in an 

interleaved order with 2.5 mm slice thickness resulting in an in-plane resolution of 2.5 × 2.5 × 2.5 

mm3. For the language localizer task, we required 45 adjacent slices in an interleaved order with 

3.0 mm slice thickness resulting in a an in-plane resolution of 3.0 x 3.0 x 3.0 mm3. After fMRI 

preprocessing, the language localizer data was re-sampled to the same space as the SL data within 

FSL (FSL 5.0.9; Zhang, Brady, & Smith, 2001). 

2.4.2. fMRI preprocessing 



Functional and anatomical data was first converted using HeuDiConv (Halchenko et al., 

2020) and then organized to cohere with the Brain Imaging Data Structure (BIDS; Gorgolewski et 

al., 2016). fMRIPrep 1.3.1 (Esteban, Markiewicz et al., 2018; Esteban et al., 2018; 

RRID:SCR_016216), which is based on Nipype 1.1.9 (Gorgolewski et al., 2011; 2018), was 

utilized for all pre-processing steps. Many internal operations of fMRIPrep use Nilearn 0.5.0 

(Abraham et al., 2014), mostly within the functional processing workflow. This automated 

preprocessing pipeline combines methodology from AFNI (Cox & Hyde, 1997), ANTs 2.2.0 

(Avants et al., 2018), Freesurfer 6.0.1 (Dale, Fischl, & Sereno, 1999), FSL (FSL 5.0.9; Zhang, 

Brady, & Smith, 2001), and Mindboggle (Klein et al., 2005; 2017) to provide scientifically 

rigorous and reproducible data for use in data analysis. fMRIPrep was first conducted on 

anatomical data only, described in more detail below. All functional data was then pre-processed 

based on these corrected T1 images.  

2.4.3. Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) and used 

as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped. Brain 

surfaces were reconstructed using Freesurfer. Nonlinear spatial normalization (warping) of brain-

extracted anatomical volumes to the ICBM 152 Nonlinear asymmetrical template version 

2009c (Fonov et al., 2009) was performed. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w.  

2.4.4. Functional data preprocessing 

For each of the functional runs per subject (four auditory SL runs and two language 

localizer runs), the following preprocessing was performed. First, a brain-masked functional 

reference volume was generated using a custom methodology of fMRIPrep. A deformation field 



to correct for susceptibility distortions was estimated based on a co-registered field map, using a 

custom workflow of fMRIPrep derived from D. Greve’s epidewarp.fsl script 2  and further 

improvements from HCP Pipelines (Glasser et al., 2013). Based on the estimated field distortion, 

a distortion-corrected BOLD reference was calculated for a more accurate co-registration with the 

anatomical reference. The BOLD reference was then used to compute the linear transformation 

between the subject’s functional data and anatomical volume using boundary-based 

registration (bbregister; Greve & Fischl, 2009). Co-registration was configured with nine degrees 

of freedom to account for distortions remaining in the BOLD reference. Head-motion parameters 

for each volume in the time-series were estimated with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters). Time-series 

data were then high-pass filtered and underwent slice-timing correction, recommended for 

multiband data with short TRs (Parker & Razlighi, 2019). Head-motion and field distortion 

corrections were then applied to the time-series with a single, composite transformation. The 

BOLD time-series were resampled to MNI 152.  

2.5. Whole-brain univariate analysis 

First level statistical analysis was carried out using FEAT (FMRI Expert Analysis 

Tool;(Woolrich, Ripley, Brady, & Smith, 2001). For each individual run, parameter estimates for 

structured and random speech relative to baseline, as well as for contrasts of interest (e.g., 

structured > random) were calculated. To combine data across runs for each participant, we 

averaged runs 1 and 2, and runs 3 and 4, together within FEAT. Parameter estimates for speech 

structured > random, speech random > structured were constructed. Group-level means for each 

contrast of interest were computed using FLAME (FMRIB’s Local Analysis of Mixed Effects; 

 
2 http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl 



(Beckmann, Jenkinson, & Smith, 2003). All z-statistic (Gaussianised T/F) images were 

thresholded at cluster-forming threshold at z > 3.1 and a corrected cluster-level threshold of p = 

0.05 (Worsley, 2012). 

2.6. Group-constrained subject-specific (GCSS) analyses 

Because understanding whether there are shared neural mechanisms underlying auditory 

SL and language processing depends critically on investigating functional activation within 

individual subjects, we performed GCSS analyses designed to take into account intersubject 

variability (Scott et al., 2019; Julian et al., 2012; Fedorenko, et al., 2010). With these analyses, we 

defined probabilistic regions of interest (“parcels”) which we use to constrain our individual 

subject analyses. We used these parcels to measure patterns of similarity between tasks within 

individuals, as well as to constrain individual functional regions of interest (fROIs).  

We first generated a set of parcels for the language localizer task. In each case we 

thresholded the data at p < 0.001 and binarized each subjects’ contrast maps (intact > degraded 

speech in the language localizer) and then summed each set of maps to obtain a probability map. 

The more conservative threshold of p < 0.001 was chosen to capture the most statistically 

significant common areas of activation across individuals. The probability map was smoothed with 

a Gaussian kernel of 6mm FWHM and further thresholded to include only voxels in which at least 

two participants had significant activity. The results of this analysis are presented in Analysis 

section 3.3. This smoothed map was then segmented into parcels algorithmically, by first 

identifying all local maxima in the map, and then “growing” the parcels around these local maxima 

using a watershed algorithm (Meyer, 1991) implemented in the SPM-SS toolbox (Fedorenko et 

al., 2010, available at http://web.mit.edu/evlab/funcloc/) that extends the parcel to adjacent voxels 

until the edge reaches a zero-valued voxel or a local minimum. We imposed a constraint that local 



maxima must be at least 4 voxels (or 1cm) apart. For the language localizer task, we chose to report 

parcels within which 80% or more participants had at least one significant voxel in line with 

previous work (Scott et al 2017, Federenko et al 2010; the results of which are included in section 

3.2). For each subject, the top 10% of voxels in each parcel are designated as their individual fROI. 

From within each individuals’ language fROI, the contrast between structured speech during SL 

and rest and the contrast between random speech during SL and rest were extracted and compared 

(Analysis 3.3).  

2.7. Univariate conjunction analysis 

In order to identify regions within individuals that show significant activation for both 

auditory SL and language, we use the same approach to identify parcels based on individual 

conjunction maps. First, each contrast maps for both tasks (intact > degraded speech in the 

language localizer and structured > random in the auditory SL task) were voxel-wise thresholded 

at p < 0.001 and binarized. Then, for each subject, we computed the conjunction of their two 

binarized contrast maps. This resulted in one conjunction map per subject, which was then used to 

locate common conjunction areas across participants using a similar parcellation technique as 

described above (Analysis 3.4): by first identifying all conjunction voxels (greater than 4 voxels 

apart) in the map, and then “growing” the parcels around these areas until the edge reaches a zero-

valued voxel. The Harvard-Oxford cortical and subcortical structural atlases were used to identify 

brain regions.   

2.8. Multi-voxel pattern analyses 

To ensure thorough investigation of neural patterns shared across auditory SL and language 

processing, we used local pattern similarity analysis (LPSA). This technique is designed to identify 

brain regions that support similar functions during different tasks, regardless of the exact level of 



activation (Scott & Perrachione, 2019). For this analysis, unsmoothed functional contrast maps 

from each task are compared. These maps have undergone the same preprocessing and first-level 

analysis as the data discussed so far, including warping to common MNI space, except that these 

maps have not been spatially smoothed and thresholded. To first determine whether the pattern of 

activity in each language parcel reflects similar task engagement during linguistic SL and language 

processing, we computed Pearson correlation coefficients between the structured vs. random 

contrast images from structured > random SL and intact > degraded language processing across 

all voxels in each parcel, within individual subjects. We assessed the significance of these 

correlations across our participants under a null hypothesis in which unrelated patterns of activity 

had a correlation of zero.   

Next, correlations between the contrast maps of structured > random SL and intact > 

degraded language processing were computed across the whole brain using a 3-voxel radius 

searchlight for each subject. The searchlight is centered on each voxel in the brain and the Pearson 

correlation is computed between contrast maps for voxels falling within the sphere. The center 

voxel is then assigned the value of the resulting correlation coefficient, thus constructing a map of 

local correlations between tasks for each subject. The correlation maps were then Fisher-

transformed and then normalized resulting in a z-score correlation map for each subject. These 

maps were then combined across subjects using GCSS (described above) to form parcels 

representing common regions with high pattern similarities across subjects. Z-scored correlation 

maps were thresholded at z = 2.3 (p < 0.01) and parcels with 50% or greater participants were 

chosen for this study. The use of liberal thresholds in this approach is to maximize the power to 

detect a common region. The Harvard-Oxford cortical and subcortical structural atlases were used 

to identify brain regions. 



3. Results 

3.1. Auditory SL performance 

All behavioral analyses for the current study were conducted in R (R Core Team, 2012). 

Mean reaction time (RT) was computed as the average time it took for a participant to press the 

button for each target syllable. To be considered a valid response to the target syllable, the button 

press had to occur in the time window of one stimulus before and one stimulus after the target 

syllable; that is, -480 ms to +960 ms relative to the onset of the target syllable. A button press 

prior to the target syllable indexed anticipation, resulting in a negative reaction time. One 

participant was removed from the RT analysis, as they did not have enough valid key presses (< 

6 trials) during the exposure phase (Mage = 19.90 years, SDage = 1.26 years, Number of females = 

14). Consistent with what we have reported in the complete sample in Schneider et al. (2020), 

the average reaction time to the target syllable across the entire exposure phase was significantly 

quicker in the structured (M = 591.50 ms, SD = 200.27 ms) versus random condition (M = 

678.71 ms, SD = 48.57 ms; t(20) = -1.93, one-tailed p = 0.03).   

3.2. Group-level neural engagement during auditory SL occurs in language-related brain 

regions.  

Before taking a subject-specific approach to clarify the functional overlap between auditory 

SL and language processing, a whole-brain analysis was performed in order to investigate the 

brain regions sensitive to embedded regularities in speech. This analysis resulted in 23 significant 

clusters (Figure 2; Table 1). Similar to previous studies contrasting structured and random speech 

sequences (Karuza et al., 2014; Cunillera et al., 2009; McNealy et al., 2006), we obtained greater 

activation in bilateral temporal gyri for the structured speech stream compared to the random 

control. However, at the same z-score threshold (z > 3.1), there were no parcels in which activation 



was observed consistently across more than 80% of participants. GCSS analysis revealed that the 

regions with the most individuals showing significant activation were left frontal pole (n = 13, 

59%), right frontal pole (n = 12, 54%), and left lateral occipital cortex (n = 12, 54%). 

 

Figure 2. Group mean probability maps depicting neural engagement during processing of 
structured versus random speech sequences. The color bar represents the z-normed (z-stat) mean 
activity (b) across participants at each voxel.  
 
 
Table 1.  
Regions of significant clusters with peak coordinates in the speech SL task (structured > random). 
Regions labelled according to Harvard-Oxford Cortical and Subcortical Structural Atlases.  
Cluster (voxels) Region x y z Z max Uncorrected 

p-value 
23 428 R Superior Temporal 39 -39.5 15.5 9.22 8.12E-14 
22 339 L Anterior Cingulate -6 28 21 9.12 1.05E-11 
21 237 R Cerebellum (Visual 

Association Area) 
6.5 -74.5 -28.5 14 4.89E-09 

20 185 L Frontal Pole  -31 53 34.8 8.55 1.79E-07 
19 170 R Frontal Pole 41.5 60.5 7.25 8.6 4.77E-07 
18 160 R Supramarginal  61.5 -44.5 43 11 9.54E-07 
17 150 R Posterior Cingulate 1.5 -12 29.2 9.16 1.97E-06 
16 123 L Premotor -18.5 13 73.2 7.98 1.57E-05 
15 94 R Fusiform  34 -69.5 -23 8.78 1.75E-04 
14 75 R Fusiform 14 -52 -25.8 10.7 9.78E-04 
13 65 R Medial Prefrontal 39 13 59.5 10.4 0.003 
12 57 L Medial Prefrontal -33.5 35.5 34.8 10.5 0.006 
11 57 L Fusiform -13.5 -47 -45 9.1 0.006 
10 52 L Insula -23.5 30.5 4.5 7.72 0.010 
9 49 L Supp Motor Area -6 20.5 59.5 8.97 0.013 



8 47 L Inferior Parietal -48.5 -39.5 43 7.03 0.017 
7 46 R Medial Prefrontal 4 45.5 34.8 8.57 0.018 
6 45 L Inferior Temporal -41 -9.5 -20.2 7.34 0.021 
5 44 L Medial Cingulate -6 -2 37.5 9.03 0.023 
4 43 L Middle Inferior -63.5 -4.5 -6.5 9.83 0.026 
3 41 L Inferior Temporal -43.5 -29.5 -12 6.6 0.032 
2 40 L Cerebellum/Occipital 

Cortex 
-41 -74.5 -25.8 7.69 0.036 

1 40 R Caudate 9 23 4.5 8.07 0.036 
Note: L: left; R: right. 
 
3.3. Subject-specific language regions are engaged during auditory SL 

In order to identify the brain regions commonly activated during language processing, a 

set of language parcels were generated from the language localizer task by contrasting intact and 

degraded conditions. Statistical maps were thresholded at p < 0.001, and only parcels with 80% or 

more participants are reported. From this parcellation of the language localizer maps, eleven 

parcels emerged: two in the left superior temporal gyrus – posterior (LSTG (posterior); N = 21, 

95%) and anterior (LSTG (anterior); N = 22; 100%), left middle temporal gyrus (LMTG; N = 21; 

95%), left temporal pole (N = 21; 95%), left precentral gyrus (N = 19; 86%), the left inferior frontal 

gyrus pars opercularis (LIFG; N = 19; 86%), two in the right superior temporal gyrus – posterior 

(RSTG (posterior); N = 21; 95%) and anterior (RSTG (anterior); N = 21; 95%), right middle 

temporal gyrus (RMTG; N = 21; 95%), right temporal pole (N = 20; 91%) and right precentral 

gyrus (N = 20; 91%; Figure 3).   



 

Figure 3. Parcels representing significant activation during language processing (intact > 
degraded) across more than 80% of participants (z >3.09). 
 
 We next asked whether subject-specific language regions are engaged during SL. To 

statistically evaluate this functional overlap, we defined subject-specific language fROIs as the top 

10% of language responsive voxels within each language parcel and then extracted the mean 

activation during SL for each condition (structured and random vs. rest) across these predefined 

voxels. This results in a measure of how sensitive language areas are to the SL contrast. Bonferroni 

corrections were applied to control for 11 comparisons. Listening to structured sequences of 

speech syllables resulted in significantly greater hemodynamic responses than listening to random 

sequences of speech syllables in bilateral MTG (left t(34.46) = -3.87, p < 0.001; right t(41.44) = -

2.85, p < 0.01), left posterior STG (t(41.90) = -2.13, p < 0.05) and left anterior STG (t(34.82) = -

3.85, p < 0.001) (Figure 4). Greater hemodynamic responses for structured versus random 

sequences in these fROIs were not significantly associated with learning outcome, as measured by 

mean reaction time difference between both conditions (left MTG, R = 0.38, p = 0.09; right MTG, R = 

0.32, p = 0.15; left STG-posterior, R = 0.21, p = 0.37; left STG-anterior, R = 0.32, one-tailed p  = 0.15). No 

LSTG (posterior)
LSTG (anterior)
Left MTG

L Temporal Pole
L Precentral
LIFG (Pars O)

RSTG (posterior)
RSTG (anterior)
Right MTG

R Temporal Pole
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other language regions showed sensitivity to differences in statistical regularities of speech (p’s > 

0.05; see Supplementary Table 1 for full statistics).  

 

Figure 4. Mean activation during processing of structured speech and random speech, within each 
subject-specific language fROI. A) Greater activation for structured speech sequences compared 
to random speech sequences was observed in four fROIs: the bilateral MTG and LSTG (anterior 
and posterior). B) Mean activity (b) for random (blue) and structured (orange) speech sequences 
within each fROI. Error bars represent the within-subject standard-error. Asterisks represent 
Bonferroni-corrected values: *p < .05, **p < .01, ***p< .001. 
 
3.4. Lack of spatial convergence in the neural basis of language processing and auditory SL 



In order to characterize the degree of spatial heterogeneity in the functional organization 

of SL and language processing, we depicted the probability of activation (proportion of subjects 

showing statistically significant response at each voxel) within each task and the probability of 

conjunction (proportion of subjects showing co-activation at each voxel) across the two tasks. The 

probabilistic maps were smoothed and thresholded at 2 subjects (10%). As expected, participants’ 

activation patterns showed a strong spatial consistency in the language localizer task especially in 

regions identified as language parcels in Figure 3 (Figure 5a). However, during the processing of 

structured versus random speech sequences, there was substantial individual variability in the 

patterns of neural activation, with evidently weak-to-modest overlap across participants in the left 

temporal region, right parietal region, and medial prefrontal region (Figure 5b). The probability 

map summarizing individual conjunctions (Figure 5c) shows that although many similar regions 

are recruited during SL and language, few common regions showing co-activation patterns 

emerged across subjects. As a result, we did not locate any significant conjunction area using this 

parcellation technique. This analysis demonstrates that, although subject-specific language parcels 

showed neural sensitivity for embedded speech regularities, there was no common brain region 

consistently activated by both tasks across all participants.  



Figure 5. Probability maps within and between tasks depicting the high degree of inter-subject 
variability present during statistical learning. a) Group activation across voxels for intact > 
degraded speech. b) Group activation across voxels during processing of structured versus random 
speech. c) Lack of conjunction in activation between language processing and SL across voxels. 
The color bar represents the percent of participants with significant activation or conjunction at 
each voxel.  
 
3.5. SL and language processing do not share common activation patterns.  

Univariate conjunction analysis applies a voxel-wise activation threshold and searches for 

voxels consistently co-activated by both tasks across participants. This approach does not 

necessarily indicate similarities in multi-voxel activation patterns across both tasks. It may be the 

case that, despite greater activation for structured speech sequences compared to random speech 

sequences within fROIs (top 10% of voxels activated) defined by the language localizer task, the 

voxels which are most activated within a given parcel differs across tasks. To determine whether 

the pattern of activity in each parcel reflects similar engagement across tasks, we masked each 

a) Group Activation for Intact > Degraded Speech

b) Group Activation for Structured > Random Speech

100%

c) Conjunction across Tasks

% of 
Participants 

with activation

0%

50%



task’s contrast map within each language parcel (bilateral MTG and LSTG (anterior and posterior); 

as shown in Figure 4), extracted the voxel values from within the whole parcel for each task 

independently, and then computed Pearson correlation coefficients between both tasks across all 

voxels in each parcel, within individual subjects. Correlations across tasks within each parcel did 

not yield any significant results (see Figure 5 and Supplementary Table 2). These findings point 

to a lack of representational similarity between tasks within individual subjects. This suggests that 

even though some language regions are sensitive to the SL contrast, substantial heterogeneity 

exists.  

 

Figure 5. Lack of representational similarity between language and auditory SL within language 
parcels that were sensitive to differences in statistical regularities of speech during structured 
versus random sequences. Cross-task correlation values within the bilateral MTG and STG did not 
significantly differ from zero. 
 

We next implemented a whole-brain local pattern similarity analysis to assess the voxel-

wise correlations across the two tasks within each individual participant. Using a 3-voxel radius 

spherical searchlight, we calculated the local correlation coefficient between the two tasks centered 

on each voxel. This technique is designed to identify brain regions that support similar functions 

during different tasks, regardless of the exact level of activation. Since this analysis aims to reveal 
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more subtle correlations between patterns of activation across tasks in the whole-brain, rather than 

identifying the most highly activated regions within a parcel, we chose a more liberal threshold 

that is still appropriate for voxel-wise tests (p < 0.01) and not the most active regions. Despite this 

more liberal threshold, we did not uncover any region in which patterns of activation across tasks 

were correlated in more than 50% of participants (individual subject cross-task correlations can be 

seen in Supplementary Figure 1).  

4. Discussion 

The current study investigates the relationship between SL and language processing by 

testing whether the two tasks share similar neural substrates. Processing of structured speech in 

the auditory SL task engaged a number of brain regions that are traditionally part of the language 

network, including the bilateral STG and MTG. The brain functional overlap between tasks was 

supported by the sensitivity of language-related regions to embedded regularity in syllable 

sequences. Importantly, these language regions are defined individually using the GCSS approach 

in a language localizer task. However, further investigation revealed substantial variability across 

individuals in the spatial patterns during auditory SL. As a result, participants did not converge in 

the subregions of their language parcels recruited for auditory SL. Moreover, the multi-voxel 

activation patterns within each language parcel were not associated across tasks, suggesting 

distinct computations undertaken for each task within the same brain region. Lastly, our whole 

brain local-pattern similarity analysis expanded upon this finding, revealing no regions in which 

neural activity was correlated across tasks in regions outside of the core-language network. Taken 

together, the current findings suggest that, while SL does in fact engage language regions, the 

neural processes underlying language comprehension and SL of an artificial language are likely 

different. 



Our approaches, relying on rigorous functional localization techniques, confirmed the 

involvement of language regions during auditory SL. We determined that the bilateral MTG and 

the left STG, parts of the frontotemporal core-language network (Fedorenko & Thompson-Schill, 

2014; Price, 2010), are sensitive to embedded regularities in a stream of meaningless syllables. 

These findings are consistent with previous reports on the activation of temporal cortices in various 

auditory SL paradigms (Cunillera et al., 2009; Karuza et al., 2013; McNealy et al., 2006; Plante et 

al., 2015). Human temporal regions are sensitive to processing of auditory sequential patterns in 

artificial languages, in addition to the classical frontal regions (Petersson et al., 2012; Wang et al., 

2015), and are reliably activated during syntactic processing of natural languages (Fedorenko et 

al., 2020; Snijders et al., 2009).  

In addition to these important confirmatory results, our study contributes to the recent 

emerging literature on individual differences during SL (Erickson et al., 2016; Siegelman, 

Bogaerts, Christiansen, & Frost, 2017; Siegelman & Frost, 2015). We provide neural evidence of 

heterogeneous learning patterns across individuals. When identifying the percent of participants 

with overlapping neural activity at the voxel level for each task (see Figure 5), we found substantial 

convergence in neural engagement during the language processing task, similar to past research 

that highlighted the homogeneity of the core-language network across participants (Fedorenko, et 

al., 2010). In contrast, agreement across participants at the voxel-level during auditory SL was 

greatly reduced. These findings suggest that while some individuals engage language regions 

during auditory SL, which regions are recruited remains highly variable. Our exploratory analyses 

add to these findings, as the relationship between the magnitude of language-region engagement 

and learning behavior yielded null results, suggesting individual learning behavior might vary 

more with the functions of other brain regions, such as learning, memory, and executive 



functioning (Conway, 2020). Further investigation utilizing neuromodulation should test whether 

successful auditory SL requires the functional involvement of language regions to provide better 

causal certainty (Uddén et al., 2008; Uddén, Ingvar, Hagoort, & Petersson, 2017).  

Our whole-brain task correlation searchlight analysis further indicated a lack of spatial 

consistency between tasks across individuals. This overall lack of inter-task similarity between SL 

and language processing in adult brains is intriguing, especially in the face of emerging 

psycholinguistic frameworks aiming to unify language processing and acquisition. For example, 

part of the P-chain framework (Chang & Dell, 2014) proposes implicit learning as the mechanism 

for how a mature language system adapts to changing inputs during processing. However, our 

findings indicate that important future steps are required to elucidate the nature of the SL-language 

relationship in the brain. First, a developmental approach comparing children and adults in their 

recruitment of the language network during SL is necessary to test whether the maturity of the 

language system is associated with greater or lesser statistical sensitivity of an artificial language. 

Second, implementing a task that requires processing statistical regularities in natural language 

(Isbilen, McCauley, & Christiansen, 2022) will offer a better opportunity for us to discover 

language-SL functional similarities in the brain. Similarly, altering the language localizer task 

utilized may uncover additional functional similarities between language-SL, as the language 

parcels identified in the current study have been shown to be biased towards semantic, as opposed 

to syntactic, processing (Fedorenko et al., 2020). Finally, the current study has limited statistical 

power to uncover critical brain-behavior relationships. Although our sample size is sufficient to 

demonstrate group-level activation patterns in SL, a larger sample size with careful subject 

characterization will lead to a clearer understanding of how the involvement of language-related 

regions during SL is associated with SL outcome.  



Taken together, our findings provide evidence that SL recruits brain regions specific to 

language with high spatial variability across individuals. As a result, we did not find commonly 

activated brain regions across processing of sentences versus structured sequences of speech 

without meaning. Moreover, multi-voxel pattern analyses suggest that distinct neural processes are 

undertaken by language regions during auditory comprehension and auditory SL. Our study is the 

first to specifically examine whether SL engages a core language network.  Future research should 

be careful to not draw assumptions about the similarity of SL and language processing on the basis 

of activation in a given region alone, as our findings indicate that there are substantial regional 

differences between tasks when examined at the level of individual subjects.  
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Supplementary Table 1.  
Sensitivity to differences in statistical regularities of speech during structured versus random 
sequences within each fROI.  

fROI t-statistic df p-value 
LMTG -3.87 34.46 4.67E-4*** 
LSTG (posterior) -2.13 41.90 3.93E-2* 
L Temporal Pole 0.09 40.60 0.93 
LSTG (anterior) -3.85 34.82 4.88E-4*** 
RSTG (anterior) -1.66 35.40 0.11 
RMTG -2.85 41.44 6.76E-3** 
RSTG (posterior) -0.93 41.79 0.36 
R Temporal Pole -0.16 35.13 0.87 
R Precentral 0.79 41.87 0.44 
L Precentral -0.71 40.15 0.48 
LIFG (Pars O) -0.31 41.69 0.76 

Note: *Bonferroni-corrected p < .05, **p < .01, ***p < .001 
 
Supplementary Table 2.  
Lack of representational similarity between language and auditory SL within language parcels that 
were sensitive to differences in statistical regularities of speech during structured versus random 
sequences. Median correlation values (R) across tasks within each parcel computed using 
unsmoothed data, as well as the result of one-sample, two-tailed t-tests on the Fisher transformed 
correlation values to determine if correlations across subjects differed significantly from zero. All 
correlations were performed within subjects comparing intact > degraded and structured > random 
contrasts across the tope 10% of activated voxels within each parcel. 
ROI R t-value p-value CI 

LMTG -0.004 0.20 0.84 -0.04, 0.05 
LSTG 

(posterior) 0.02 0.76 0.45 -0.02, 0.04 

LSTG 
(anterior) -0.04 -0.75 0.46 -0.07, 0.03 

RMTG -0.02 -0.20 0.84 -0.04, 0.03 
 
  
  



 
Supplementary Figure 1. Individual subject cross-task correlation maps. Using a 3-voxel 
radius spherical searchlight, we calculated the local correlation coefficient between the language 
processing and SL task centered on each voxel (p < 0.01). No parcels emerged as significant in at 
least 50% of participants, and individual maps suggest these null results may be attributed to 
substantial heterogeneity. Plots indicate correlation coefficients (R) at the voxel-level within 
individuals.  


